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Abstract 

A new class of models is proposed for interpretation of 
the small-angle X-ray scattering from catalyst-like 
systems, which consist of a random arrangement of 
two or more phases, in each of which the electron 
density is uniform. By considering a grid formed of 
identical cells, each of which is filled with one phase or 
another, the calculation of the correlation function, and 
hence the scattering intensity, is reduced to a counting 
process and evaluation of Po(r), the probability that a 
line segment of length r lies wholly within one cell. 
Results for simple two-dimensional grids are considered 
in detail, with P0 calculated by several methods. The 
Fourier transform of the correlation function is 
calculated for the cubic lattice, and properties of the 
scattering intensity curve discussed. Extensions of the 
model discussed here, the simplest of the cell models, 
are indicated. 

Introduction 

We consider a system, such as a supported metal 
catalyst, which consists of a random arrangement of 
two or more different materials, one of which may be 
void. The regions occupied by each material are of 
varying sizes and shapes. Within each region, the 
electron density is uniform. The important properties 
which characterize such a system are the volume 
fractions of the phases, and the interphase surface 
areas. The latter may be interpreted in terms of 
porosities, mean particle sizes, etc. It is well known that 
X-ray scattering can be used to measure surface areas 
in such systems (Thomas & Thomas, 1967; Somorjai, 
Powell, Montgomery & Jura, 1967; Satterfield, 1970; 
Sasvfiri, 1976). Gas adsorption measurements, the 
most commonly used method, are not ideal because 
they depend on assumptions about the adsorption 
process (form of isotherm, reversibility) and properties 
of the adsorbing species (size, packing, chemical 
interactions); they have been characterized as 'essen- 
tiaUy empirical' (Solymosi, 1976). Other methods also 
have disadvantages and advantages (Thomas & 
Thomas, 1967, Chs. 3 and 4). 
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The small-angle scattering of X-rays gives a 
measurement of the total surface, and does not depend 
on properties of particular molecules (indeed, com- 
parison of surfaces from X-ray measurement with 
surfaces from gas adsorption would furnish important 
information about the nature of the surfaces). In order 
to use the X-ray scattering, however, one requires a 
model of a random system of the kind described. 
Usually, the models used are based on random or 
regular packing of particles of a specified shape, 
perhaps of varying size (Thomas & Thomas, 1967; 
Satterfield, 1970; Sasvfiri, 1976). While this is con- 
venient to work with (Guinier & Fournet, 1955), it does 
not seem an adequate representation of our catalyst- 
like systems (M6ring & Tchoubar, 1968). A theory 
which avoids the use of particles was given by Debye, 
Anderson & Brumberger (1957) for a two-phase 
system and subsequently extended to multiphase 
systems (Goodisman & Brumberger, 1971). The 
meaning of 'randomness' in the context of such models 
is not always clear (Goodisman & Brumberger, 
1979). 

A knowledge of scattering intensity I(h) for large h 
gives the surface area for a two-phase system (Guinier 
& Fournet, 1955). Here, h -- 2n sin 0/2 with 2 the 
wavelength and 0 half the scattering angle. When 
there are several phases, there are several surfaces, and 
more information is needed. For an isotropic system, 

CO 

I(h) Ie(h) rl2 V f y(r) sin hr = ~ 4nr 2 dr, (1) 
o hr 

where le(h ) is the scattering of a free electron, r/2 is the 
mean-square density fluctuation, V is the illuminated 
sample volume, and y(r) is the normalized correlation 
function (see below), which contains the desired 
information about the system. For example (Guinier & 
Fournet, 1955, p. 81), 

OO 

½ tc = Y 7(r) dr (2) 
0 

defines a 'distance of heterogeneity' l c which is the 
mean diameter of an isolated particle, and, for a 
two-phase system of the kind we discuss, is such that a 
line of length L which starts in phase 1 will pass 
through regions of phase 1 for a length L~0~ + (1 - 
~o~)lc/2. Here ~o~ is the volume fraction of phase 1. 
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To use the X-ray scattering to measure 7(r), we 
derive the form of 7(r) from a model involving several 
parameters, and find the values of these parameters by 
comparing the experimental scattering curve I(h) with 
that derived from 7(r) via (1). We are presenting a new 
class of models, based on random filling of the cells in a 
grid, for interpretation of X-ray scattering from 
multiphase random systems. The present paper dis- 
cusses the basic ideas and presents calculations on the 
simplest of the models. Calculation of the correlation 
function requires calculation of a set of probabilities, 
which are obtained in models of the present type by 
counting of discrete cells. Predictions of the simple 
theory will be compared with predictions of the 
previously presented continuous model (Debye, Ander- 
son & Brumberger, 1957; Goodisman & Brumberger, 
1971), which proceeds from quite different 
assumptions. 

The basic ideas of the cell models are discussed in §I. 
The information necessary to obtain the correlation 
function, from which X-ray scattering intensities can be 
derived, will be identified. In §II, the two-dimensional, 
two-phase system is illustrated with a specific example 
of the completely random system. In §III, the cor- 
relation function is obtained for this system, to show 
how the surface-to-volume ratios enter. Our goal in this 
work is of course the use of scattering intensities to 
obtain interphase surface areas for three-dimensional 
systems. The method of §III is applied to the 
three-dimensional two-phase system in §IV, and the 
results discussed. In §V, we discuss the generalizations 
of our formulas to multiphase systems and possibilities 
for future work on these models. 

I. The cell models 

The systems of interest to us are random assemblies of 
regions of different electron density, and the X-ray 
scattering yields information on the surfaces between 
the regions. The regions are of varying size, shape and 
orientation. The electron density is homogeneous 
within each region, so that the system is characterized 
by the electron densities and volume fractions for the 
different phases. As a whole, the system is isotropic and 
homogeneous. 

In the cell models, we consider the space of the 
system to be divided into cells, all of the same size and 
shape. Each cell is filled with matter belonging to one of 
the phases (including void) making up the system. The 
way in which one decides which phase to place in a 
given cell will differ from model to model, but the 
fraction of cells tilled with a particular phase is given by 
a predetermined volume fraction or composition. In the 
simplest model, which we discuss in the present paper, 
each cell is independent, and is assigned randomly to 
one phase or another. By tilling cells according to some 

recipe, one generates inclusions, for each phase, of 
varying size and shape. 

For example, Fig. 1 shows a random two-phase, 
two-dimensional system generated by taking each cell 
in turn and deciding on the basis of a random event 
whether to fill it in or not. There are no correlations 
between ceils. The predetermined volume fractions, ¼ 
and ~, give the probabilities for filling that were used in 
making the decision for each cell. Some of the simpler 
figures generated are listed in Table 1. 

The surface-to-volume ratio in two dimensions 
would be the length of boundary line between filled and 
unfilled squares, divided by the area of filled squares (~ 
the total area). We will consider in §II what this is 
expected to be for a given set of composition numbers 
(¼ and ~ in the present case). The surface-to-volume 
ratio could be obtained by summing up contributions of 
the different figures, but we will be able to give a 
general formula. It will also be interesting to consider 
predicted frequencies for each figure of Table 1, to 
compare to what was found experimentally. Study of 
the shapes generated in this simple case is helpful in 
developing a feeling for what occurs in more com- 
plicated systems. 

The correlation function 7, in general, is defined as 
the normalized average, over orientations and positions 
of the vector r 0, of r/(r 0) r/(r 0 + r), where r/(r) is the 
deviation of the electron density at r from the average 
value. Clearly, 7 depends on r alone for an isotropic 
system. The normalization of 7(r) is such that 7(0) = 1. 

Table 1. The smaller configurations, with theoretical 
probabilities,for the two-dimensional square grid 

Configuration 

m 

m 

0,07910 

0,01112 

0.00209 

0.00156 

0.00039 

0,00039 

0.00039 

0.00039 

0,00029 

0.00029 

0,00022 

Orientations 
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If Pij(r) represents the probability (averaged over 
positions and orientations) that a line segment A B  of 
length r has end A in phase i and end B in phase j, one 
can easily show (Goodisman & Brumberger, 1971) 

Y Ptj ni nj - h 2 
tJ 

~r)  - n-- ~ _ h2 (3) 

If the volume fraction or composition variable of phase 
i is represented by ~o t, the average electron density is 

h = Y ~0tn t (4) 
1 

and the average squared electron density 

n~= Y ~0, n~. 
l 

(5) 

In the simplest cell model, there is no correlation 
between different cells, so that Plj(r) = ~o t ¢pj if the line 
segment spans two or more cells and Ptj(r) = ~o i ~ j  if 
the line segment lies wholly within one cell (6tl = 0, 
i :/:j; ~t.~= 1, i = j ) .  

Let Po(r) be the probability that a line segment of 
length r does not cross a cell boundary, i.e. lies wholly 
within one cell. The probability PI~ is given by P0 ~ol + 
(1 - Po)~;  P~2 is given by (1 - P0)~0~ ¢P2, and so on. 
Thus, for the two-phase system with no correlations 
between ceils, 

~ e i j n t n j  = eo(CPln~ + ¢p2 n~) 
tj  

+ (I  - Po)(~o~ n~ + ~o~ n~ + 2~ol ~o~ nl n 9 .  

Therefore the correlation function for the two-phase 
system is 

Po(~01 n] + ~%n]) + (1 - P o ) n 2 ] - h  2 
7(r) = n ~ -- h 2 = Po (6) 

and our problem reduces to the determination of P0. 
This will be dealt with in §§ III and IV, after 
consideration of a specific example in two phases and 
two dimensions. 

Consider now a random system involving more than 
two phases. The generalization of the above arguments 
is straightforward, and 

+ Y'lJ (1 -- P0)~0i ~01 n t nj -- h 2 ] 

where the prime on the summation means i and j must 
be different. We obtain 

7(r) = tl ~ ~o, n~ _ (  ~ cPi ni)2 - Po (7) 

independently of the number of phases. This implies 
that, for the uncorrelated random system, the shape of 
the scattering intensity curve I (h)  is independent of the 
number of phases. Its magnitude will change because of 
the factor of r/2 in (1). For example, if one formed a 
random system of three phases by partly filling the void 
phase of a two-phase system with a third phase 
(Goodisman & Brumberger, 1979), the shape of the 
scattering would not change, assuming the filling was 
done in a totally random way. 

It should be emphasized that the division of space 
into cells of identical size and orientation is a 
convenience for counting volumes and surface areas. It 
is not meant as a faithful representation of the system; 
averaging over orientations must be performed. 
However, it can be used to give some insight into the 
structure according to percolation theory (Shante & 
Kirkpatrick, 1971). 

A two-phase (solid and void) system would be 
mechanically unstable unless a solid cluster of infinite 
size existed. The minimum fractional occupation 
number of solid which guarantees such a cluster is the 
percolation probability, which is 0.31 for a lattice of 
cubes (Poweil, 1979). The actual system would not be 
made of cubic particles; it would be more realistic to 
use spheres on the cubic lattice. The actual volume 
fraction would then be (0.31) (•la/6)/P = 0.16, a 
number which in fact varies little with the type of lattice 
used (Powell, 1979). Since the spheres of diameter l just 
touch, structural stability requires that larger ones be 
used, raising the volume fraction. On the other hand, 
for a catalyst one would like the largest void volume 
consistent with structural stability, to make the interior 
surfaces maximally accessible. Indeed, many catalysts 
seem to be produced with volume fractions of 18- 
20% for the solid phase. 

In a more sophisticated model, we could consider 
placing solid spheres or other shapes within the cells, on 
a random basis, to produce a desired volume fraction. 
In the present paper, however, we use cubes, with the 
occupation probabilities chosen to equal the volume 
fractions, and average over orientations to produce a 
correlation function depending only on one length 
parameter. Surface areas are calculated for the figures 
formed from the cubes. 

II. Example: Two dimensions, two phases 

The two-dimensional grid shown in Fig. 1 was 
generated by randomly assigning each grid square a 
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color, black or white. The only constraint on the 
assignment was that the grid squares would be assigned 
white three times as often as black giving a three to one 
ratio white to black. This was achieved by selecting 
marbles one-by-one from a stirred lot consisting of 
thirty black and ninety white marbles. The selection of 
a black marble resulted in assigning the grid square a 
black color. 

This random assignment of black and white colors to 
the grid resulted in the formation of variously shaped 
aggregates of neighboring black grid spaces. Specific 
polygons hereafter are referred to as configurations. 
Most configurations will have several orientations, each 
distinguished from one another by rotations in the 
plane of the grid. Superimposable rotations are con- 
sidered as one orientation. 

The probability of finding a polygon composed of n 
black grid squares and s neighboring white squares will 
be equal to the probability of finding a black grid (¼) 
raised to the nth power times the probability of finding 
a white grid unit (2) raised to the sth power. 

v~>",s) = (~)" (~)~, (8) 
where P~o ",*) is the theoretical probability of finding a 
polygon of n black grid squares neighboring s white 
squares. Only grid squares that share a side, and not 
squares situated diagonally to each other, are con- 
sidered to be neighbors. Thus 

P(O I'4) = (¼) (9)  4 ~--- 0.07910 

is the probability for an isolated black square and 

ptoZ,6) = (¼)2 (9)6 = 0.01112 

mm m • • 

Z m 
, 

m- ,,-" m m m:: 

niP,. ,,,m.m . mmmn. 
~.m m mmm . % ~  m-mm~ 

Fig. 1. Sample two-dimensional grid, formed by independent 
random coloring of squares. 

for a two-square domino. For n greater than 2, different 
configurations exist, and for polygons made up of more 
than one grid square different orientations must be 
considered. Table 1 lists the various configurations, 
orientations and their respective theoretical pro- 
babilities. The theory of random clumping (Roach, 
1968) gives a similar algorithm for calculation of the 
probabilities. 

As we have defined it, p~,,,s) is the probability that an 
oriented figure having indices n and s will be located at 
an arbitrarily chosen square on the grid. To make this 
definition complete, we define, for each figure, a 'key 
square' whose position gives the location of the figure. 
The key square of an orientation could be any square 
within the orientation so long as it is not changed 
throughout the treatment. Now the product of p~,,.s) and 
the number of squares on the grid should give the 
number of times a given configuration and orientation 
is found on the grid. 

For comparison with (8), the experimental pro- 
babilities p(,,s) were determined from the number of 
times a specific configuration and orientation occurred 
within the boundaries of the grid. Figures or apparent 
parts of figures lying on the grid border were given 
special consideration. If a configuration shares a side 
with the grid border, the neighboring grid squares 
outside the boundary may or may not meet the criteria 
for defining the shape. The probability that they do is 
multiplied by the number of occurrences. If part of a 
figure (including its key square) is on the grid, similar 
considerations are applied to the squares outside the 
border to give a probability to be multiplied by the 
number of occurrences. The total number of times a 
specific configuration and orientation occurs (including 
the contributions of the bordering possibilities), divided 
by the total number of grid squares, gives the 
experimental probability. 

For example, consider the horizontal orientation of 
the (2,6) ('domino') configuration. Let the key square be 
the one on the left. In the grid of Fig. 1 there are nine 
non-bordering horizontal dominoes. There are three 
with a long edge along the boundaries of the grid; the 
probability that these cases fulfil the criteria for this 
configuration is (9) 2 . On the right edge there are nine 
single black squares that each can possibly be part of a 
horizontal configuration of the type (2,6), with pro- 
bability (¼) (9) 3. Single squares on the left boundary 
cannot belong to a horizontal domino on the grid 
because the key square is outside. Finally there is one 
corner black square that is assigned the weight (]) (9) 4. 
The probability for horizontal (2,6) configurations 
found on the grid is thus 

9 + 3(9) 2 + 9(¼)(9) 3 + (¼)(9)' 

number of squares 

11.71582 
- = 0.00915. 

1280 
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Table 2 fists a comparison of the experimental and 
theoretical probabilities. 

For each configuration there is a definite perimeter- 
to-area ratio, equal to the sum of line segments about 
each configuration divided by the configuration area. 
The overall perimeter-to-area ratio could theoretically 
be calculated by summing up contributions of all the 
orientations of all the configurations (probabilities 
times perimeter-to-area ratios). The number of possible 
configurations as n increases becomes large rapidly, 
making this approach extremely tedious. 

A general formula for the perimeter-to-area ratio 
may be derived, avoiding the difficulties of counting 
configurations. The probability that any line segment of 
the grid is part of the perimeter, i.e. that it separates a 
white grid square from a black grid square, is 2(¼)(:l). 
This probability times the total number of line segments 
in the grid will give the theoretical perimeter found on 
the entire grid. Thus, in general, the perimeter-to-area 
ratio is 

P 4mnp(1 - p)l 4(1 - p)p 
- -  = - , ( 9 )  
A mnl 2 l 

where m and n are the overall dimensions of the grid, p 
= the probability a grid square is black, (1 - p )  = the 
probability a grid square is white, and l = length of a 

Table 2. Comparison between theoretically calculated 
and measured occurrence probabilities for  shapes on a 

two-dimensional square grid 

Configuration 

m 

.11 
l 

Theory 

0,07910 

0,01112 

0,00209 

0,00156 

0,00039 

0,00039 

0,00039 

0,00029 

0,00029 

0,00029 

0,00022 

Experiment* 

0,0750 

0,0109 

0,0019 

0,0024 

(0,0000) 

(0,0008) 

(0,0000) 

(0,0007) 

(0,0007) 

(0,0000) 

0,0009 

*These  represent averages over orientations. Numbers  in 
parentheses represent occurrences of  less than 1 on the 1280-space 
grid, and hence are not statistically significant. 

line segment. For the grid of Fig. 1 the ratio of 
perimeter to filled area was found to be 2.96; the 
perimeter-to-filled area ratio found using (9) is 3.00. 

The extension of the calculations of this section to 
three dimensions is obvious. One can calculate occur- 
rence probabilities for three-dimensional shapes in 
terms of the number of cubes making up a shape and 
the number of neighboring cubes. The perimeter and 
area become respectively surface and volume. Consider 
a three-dimensional grid made of cubes of length l with 
occupation probabilities p and 1 - p, with dimensions k, 
m and n. The theoretical number of squares that are 
part of the surface is 3 kmn times 2p(1 - p), so the 
surface-to-volume ratio is 

S 6 kmnp(1  - p ) l  2 6(1 - p ) p  

V kmn l 3 l 
(10) 

The correlation function is essentially the probability 
of non-crossing (equations 6 and 7). We calculate it for 
a two-dimensional square grid in the next section, and 
for the three-dimensional cubic grid in § IV. 

I I I .  C r o s s i n g  p r o b a b i l i t i e s  in  t w o  d i m e n s i o n s  

Consider a square of edge length L, lying between O 
and L on the x and y axes. The probability that a line 
segment of length r, with one end (A) in the square, 
crosses out of the square, is obtained by calculating the 
probability when A is located at (x,y) and then 
averaging over all (x,y) within the square. It suffices to 
consider x < L/2 ,  and crossing of the top of the square 
(y = L) only. If p(r) is the averaged probability for a 
crossing of the top, Po(r) = 1 -- 4p(r). 

The probability for a particular location (x~v) and 
length is the fraction of orientations of the line segment 
which lead to a crossing. Let u = L - y. There are four 
cases: 

(1) I fu  > r, the probability p(r) is zero for all x. 
(2) I f u  2 + x 2 > r  2 >  u 2 0 r r  2 - x  2 < u  2 < r  2,the 

probability is ~1  cos-1 (u/r). 
(3) If ( L -  x)  2 + u 2 > r 2 > x 2 + u 2 or r 2 -  ( L - - x )  2 

< u 2 < r 2 - x 2, the probability is (2zO-l[cos-l(u/r) + 
cot- l (u/x)] .  

(4) I f r  2>  ( L - x )  2 + u  2 0 r u  2 < r  2 - ( L - x )  2,the 

probability is (2n)- l [cot - l (u /x)  + co t - l (u /L  - x)]. 
The different regions of r and x we must consider are 

shown in Fig. 2. The detailed calculation is given in the 
Appendix, with the result in Fig. 3. The same method of 
calculation can be applied to the triangle (unpublished 
calculations) and the result (shown in Fig. 3) used to 
discuss a model for a random n-phase system based on 
a lattice of equilateral triangles. 

There exists another method of calculating P0 for a 
square, which is applicable to the cube as well. 
Considering a square grid formed by equally spaced 
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verticals and horizontals, we ask for the number of 
crossings made by a line segment of length r oriented at 
an angle of 0 to the vertical (0 < 0 < z0. Along the stick 
direction, the horizontals have a spacing of L/I cos 0 I, 
so the average number of horizontals intercepted is 
rlcos OI/Z. If this is greater than 1, the stick must 
cross. If it is less than 1, the probability of the line 
segment intercepting a horizontal is rl cos 01/L. For the 
verticals, the same statements can be made, with sin 0 

r= v/L 2+(L-x) 2 

r = L  / 

r = L  --x r = x  [ 

/ i I 
I \ 

/ t \ 
I 

/ x =L/2  I N 

/ 
r =  k / / ~  + L 2 

Fig. 2. Different regions of r and x for calculation of intersect 
probability for a square. 

t.0 

I I I I I I 

0 , 8  

0.6 

0.4 

0.2 1 

0 I 
I 2 3 4 5 6 

SCALED DISTANCE 
Fig. 3. Correlation function for a square grid (non-crossing 

probability) plotted (dots) against the scaled distance 4r/L Solid 
line shows the corresponding quantity for an equilateral triangle, 
plotted against the scaled distance 4rx//3/l. 

substituted for I cos 01. In order for the line segment to 
cross neither a vertical nor a horizontal, we require 
rlcos 01 < L and r sin 0 < L. If both conditions are 
fulfilled, 

( rlcos 01)(  rsin 0)  
t5o= 1 1 . (11) 

L L 

We have to average /50 over 0, considering only the 
allowed angles, to get Po. The allowed angles are those 
for which L / r  exceeds the larger of sin 0 and I cos 01. 

For L / r  < 1/V/2 no angles are allowed, and the 
probability Po of no crossing is zero. For L / r  > 1, all 
angles 0 are allowed, and the probability Po is ; ( r, osO,)( 

1 dO 1 1 
zt L 

o 

Z+ 2 ' 

r sin 0 
/ L 

For 1 > L / r  > l/V/2, we get 1[ ; ( 
- 2 d O 1  P o = r t  

cos -~ (L/r) 
sin -If~(L/r) ( 

+ 2  . d0 1 

n/4 

= 2 [ s i n - l ( L )  - c o s - l ( L )  

2L 2 

rcosL O)(1 rsinL 0 )  

r c o s 0 ) ( L  1 rsin0)]L 

2(r2--L2) 1/2L2 

which checks our previous result. The correlation 
function y = P0 is shown in Fig. 3. 

IV. Correlation function and scattering for cubic lattice 

We may now consider the correlation function for a 
randomly filled lattice of cubes of length/. To calculate 
Po(r), the probability that a line segment of length r 
does not cross a cube boundary, we use the second of 
the methods given for squares. In three dimensions, we 
have that the probability of no crossing is 0 whenever r 
exceeds any of//Icos 011, l/Icos 021 or//Icos 0al, where 
O 1, 02, and 03 are the angles made by the direction of r 
to the three perpendicular axes defining the series of 
planes which delineate the lattice. If r is less than all 
three quantities, the probability of no crossing is 

,o(1 r os0 )(l, r os02,)(l r os0 ,) 
(12) 

We then average Po over angles to get Po; it suffices to 
consider the first octant: 0 < 0 < ~/2 and 0 < ~o < ~/2. 
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The details of the calculation are given elsewhere 
(Goodisman, 1980). It should be noted that Stokes & 
Wilson (1942) have calculated scattering intensities for 
rectangular parallelepipeds and other shapes; Po(r) can 
be obtained from the quantity V x in their paper by 
averaging over all directions. Mrring & Tchoubar 
(1968) have given P0 for a cube for r < I. Miller & 
Schmidt (1962; Schmidt, 1965; Miller, 1961) gave 
asymptotic (large h) expansions for the scattering 
intensity of collections of randomly oriented right 
cylinders of arbitrary cross section, which includes 
prisms. The intensity for cubes is checked by our 
formulas (14) and (15) below. 

We find a non-crossing probability Po(r) which 
decreases monotonically from a value of unity at r = 1 
to a value of zero at r = lv/3 (length of cube diagonal). 
Po(r) and its first derivative are continuous functions, 
but the second derivative of Po(r) has large discon- 
tinuities at r = l and r = lv/2 (cube face diagonal). 
Explicitly, 

3 r 2 r z 1 r 3 
Po(r)= l ---2-i + ~z l 2 4re 13 , O < r < l 

(~ ~ ) l  3r 6r 1 
Po(r) = --2 + -- - + + cos -1 - 

r 2 -~ l - -~  r 

_ _ _  +t(1 + r 2 ] 

r 3 

+ 2zd 3 l < r  < lV/2 

2 {~[3_~ l 5] 
Po(r) = -  + cos -1 

zt (r 2_12)1/2 8 

3m" 2zt [ r(r2- 212) 1/2 ] 
+ - -  + tan -1 

4l 3 l 2 

2l [2l(r2--212) 1/2 ] 
_ _ _  tan-a 

r 3 /2  - -  r 2 

3r l 
_ _  _ _  COS -1  

l (r z -- 12) 1/2 

( r ~ ) (  2 /2 )  1/2 l r 3 

+ 1 + 1 r 2 8 l 3 

. . . .  tan- ,  
4 l b -  V/3a]J 

lv/2 < r  < lV/3, 

where a 2 = 414(r 2 - 2/2) and b = t a - 2l 2 r - 14/r. This 
function is shown in Fig. 4. A plot of the second 
derivative, which is proportional to the intersect 
distribution for a cube, shows some interesting features 
(Goodisman, 1980). 

In order to determine the scattering intensity, we 
need the Fourier transform of y(r) or P0(r): 

OO 

f sin hr 
r P° h-----7- 

o 

dr 

1[i( 3r 1;) = -  1 - - - +  12 (s inhr)r  
h 2 l rt 4zr 

dr  

1~/2 /~/3 

+ f T(r)(sin hr)rdr+ f T(r)(sin hr)rdr]. 
1 Iv~2 

(13) 

Here, we can perform the integration analytically from 
r = 0 to r = l; in each of the other ranges of r, we 
approximate the correlation function by fitting ry(r) to 
a power series in r, so that the integration can be done 
analytically as well. It is important to ensure that the 
values and slopes of y at the ends of each range are 
correct, since spurious discontinuities in ?(r) or ~'(r) 
lead to terms in the Fourier transform behaving as h -z 
and h -3. The result for (13) is as follows (different 
polynomials were tried to check accuracy of the 
formula): 

sin hr 
f r2 Po - -  dr = F(hl)/h 3 (14) 
o hr 
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Fig. 4. Correlation function (non-crossing probability) for a cube, 
plotted against distance in units of edge length. 
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where 

F ( x )  - 1.9099x 3 (2.2920x 18.2051)x a 
COS X 

9.9655 
- -  sin x 

X 4 

0.1576 16.2952 ) 
+ cos (xv/2)  

X X 3 

1.0367 0.0253 
÷ X4 s in(xv/2)  - -  cos (xv /3)  

X 

0.2692 
+ ~ sin (xv/3).  (15) 

X 2 

This compares well with formulas of Miller & Schmidt 
(1962; Miller, 1961) for large x. The function F(x) ,  
plotted in Fig. 5, is everywhere positive, as the intensity 
must be. For x above 25, F ( x )  is essentially (3 - 2.292 
cos x) /x .  F ( x )  approaches zero smoothly for x --, 0, the 
functional form of (14) and (15) becoming invalid for x 
les than about 0.5. For h --, 0, the integral (14)is  just 
f r2Podr  = 0.7958l  a, so that F(x)  should become 
proportional to x a for x --, 0. 

For the purposes of making comparisons to ex- 
perimental results, it is sometimes convenient to use the 
moments of the intensities I(h), and consider dimension- 
less ratios of these moments. The j t h  moment of the 
intensity for point collimation would be 

co o(3 

M j =  f I(h)h j dh = C f F(hl)h -a h j dh, 
o 0 

where C is the same for all j .  Moments higher than the 
second do not converge because of terms in x -1 in F ( x )  
for large x; Mj for j > 0 also does not converge. The 
0th, 1st and 2nd moments are, respectively, 
0 .240282Cl  2, 0.45338Cl,  and 1.57654C. The 
dimensionless ratio M o M 2 / M  2 is thus 1.84288. The 
other available random theory (Debye et al., 1957) 
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Fig .  5. T h e  s ca t t e r i ng  in t ens i ty  for  ou r  s y s t e m s  is p r o p o r t i o n a l  to  
F(hl)/h 3, where l is the cell (cube) edge length and h = 4~ sin 0/2. 

predicts an exponential correlation function and a 
scattering intensity proportional to (1 + h 2 a2) -2. Thus, 
within a common multiplying constant the 0th, 1st and 
2nd moments are, respectively, n/4a, 1/2a 2, and zc/4a 3, 
so that the dimensionless ratio M o M E / M  2 is 7~2/4 = 
2.4674. 

It may be noted that, if J(h) is defined as the Fourier 
transform of y or P0 according to (13), the second 
moment of J(h) is exactly zt/2 times P0(0), and usually 
P0(0) = 1. The proof is as follows: 

sin hr 
J(h) = f e o ( r ) ~  r 2 dr 

o hr 

e i h .  r 

= fPo(r) ~ dr. 
4re 

Inverting the Fourier transform, we have 

Po(r) = 4z~(2z0 -3 f J(h) e -ih'r dh 

(16) 

(17) 
oo 

2 s i n  hr 
[" h 2 dh J(h) 

zr J hr 
0 

and one recalls that sin x / x  approaches unity as x 
approaches zero. The difference between 1.57654 and 
½zc -- 1.5708 is a measure of the accuracy of our 
numerical methods. For  the other theory, the cor- 
relation function e -r/a gives J(h) = 2a3(1 + h2a2)  -2 
(Debye et al., 1957). 

By integrating (17), we obtain 

oo ~ sin hr 
f Po(r)dr = 2 f h 2 dh J(h) f dr 

o o o hr 

oo 7t 

= 2  f h dh J ( h ) -  
o 2 

so that the first moment  of h is actually equal to the, 
integral of the correlation function over all r. This also 
serves as a check on the accuracy of the numerical 
techniques we have employed. 

V. Discussion 

The theory presented in this work is the simplest in a 
class of models for multiphase systems, in which the 
correlation function is calculated by consideration of a 
grid of cells, each filled with a single phase. In this 
simplest model, all cells are of the same size, and each 
cell's contents is determined independently of the 
others', with no correlation between cells. Whether this 
is a reasonable assumption for a particular system can 
only be decided by comparison of the predictions of the 
model with experimental X-ray scattering intensities. 
Consideration of the moments of the intensity is one 
way to do this. 
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For the simplest model, we have discussed only the 
two-phase case in detail. Of course, if one is interested 
solely in the surface-to-volume ratio for a two-phase 
system, one piece of experimental data suffices, without 
recourse to any theory. Assuming one knows all the 
quantities appearing in (1) except for the correlation 
function, the limit of h4I(h) for large h gives the 
surface-to-volume ratio or specific surface, regardless 
of the model. In the present case, taking the limit 
involves averaging over oscillating terms; this gives (see 
equations 1, 14 and 15) 4Ztle(h)tl2V(3/l)which 
(Guinier & Fournet, 1955, p. 80) is equal to 2Zde(h) (n~ 
- n:)2S, so S/V = 6p(1 - p)/l in agreement with (10). 
The advantage of having a model, of course, is the 
additional information given about the surfaces. If it is 
verified that the model applies to a given system, 
considerations like those of § II give an idea of the 
arrangement of the two phases and how the specific 
surface is distributed. 

For a three-phase system, at least three pieces of 
experimental data (except for V and r/2) are needed. 
The simplest model predicts that the shape of the I(h) 
curve will be the same as for the two-phase system. If 
indeed this model applies, it is not difficult to predict the 
three specific surfaces. Let the volume fractions be qh, 
tp 2 and ~o3; and let the grid contain kmn cells of volume 
l 3 and 3 kmn boundary faces. The probability of any 
one boundary face contributing to the surface between 
phases i and j is 2~01 ~0j, so the ratio of the i-j surface 
area to the total volume is 6~o~oj/l. It is irrelevant 
whether the three-phase system is formed by mixing the 
three components or by replacing one phase of a 
two-phase system by a mixture of two phases. Only the 
final volume fractions count. This is certainly not true if 
there are correlations between cells. Interestingly, the 
situation in which the surfaces Stj are strictly in the 
ratios of the products of volume fractions, ~0t~pj, 
constitutes a degenerate case in the previously presen- 
ted multiphase theory (Goodisman & Brumberger, 
1971). 

In comparing the cell theory with the previous one 
(Debye, Anderson & Brumberger, 1957) we may note 
that each has certain features which are physically 
unreal. The Debye--Anderson-Brumberger theory al- 
lows for inclusions of any size, with no minimum. On 
the other hand, it is truly isotropic, whereas the cell 
theory must be made so by averaging over orientation 
angles. All the configurations are constructed of cubes, 
which possibly introduces special problems because of 
the corners. However, use of a cubic or other 
space-filling form reduces all the computations to 
counting of discrete units, a great simplification. 

We believe that the great advantage of the cell 
models lies in their physical visualizability, which has 
been invoked in the paragraphs above. It is possible to 
show the specific shapes that contribute to the surface 
and their occurrence probabilities. The meaning of 

randomness is simply the lack of correlations between 
the contents of different cells. The meaning of ran- 
domness is subtle in the Debye-Anderson-Brumberger 
theory (Goodisman & Brumberger, 1979). In generat- 
ing the differential equation for the Pij, it is assumed 
that the chance of finding an end of a line segment at 
the/j  surface is proportional to the ratio of the area of 
that surface to the total volume, regardless of the 
location of the other end. How to modify this 
assumption to introduce nonrandomness is not clear. 
For a three-phase system, the volume fractions do not 
determine the surface areas, whereas they do in our 
uncorrelated theory; is this theory, then, more random? 

Introduction of correlations between cells may be 
used to introduce physically reasonable features. One 
might expect configurations of high surface-to-volume 
ratio to occur less often than predicted by random 
statistics, perhaps ascribing this 'clumping' to the 
influence of surface tension. In the present model, one 
would modify the expressions for the Ptj (§ I), so as to 
increase Pu in the case of a crossing between cells. The 
modifications could also take into account the method 
of preparation of the sample. Thus, if a third phase (for 
instance, metal) were introduced into an already- 
formed two-phase (solid plus void) system, one would 
not find regions of the third phase totally surrounded 
by the other solid phase. 

Different phases may be treated differently as 
follows. Having filled some predetermined fraction of 
the cubes with solid material of phase I, one divides 
each of the unfilled cubes into smaller cubes and fills 
some predetermined fraction of these with solid phase 
II. For supported metal catalysts, phase I represents 
the support and phase II the metal, which is known to 
be more highly dispersed; this treatment mimics the 
method of preparation of the catalyst. The correlation 
function and scattering are readily calculated using the 
arguments given in the present paper (Coppa & 
Goodisman, 1981). 

As usual, there is only one simple model and a 
multitude of ways in which it can be modified. A 
sufficiently complex model can always be para- 
meterized to fit any experimental scattering curve. 
Nevertheless, the simplicity with which calculations can 
be made analytically, plus the detailed physical picture 
provided, make the pursuit of the cell models, intro- 
duced in this work, valuable. 

This work was partially supported by a grant from 
the National Science Foundation. 

APPENDIX 
Crossing probability for squares 

We consider crossing probabilities for r and x values 
corresponding to regions I-VI, as shown in Fig. 3. For 
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region I, the probabil i ty averaged over u (u = L - y )  is 

L -1 dUPE + dupl = r/nL. 
r 

Here, the subscripts 1-4  refer to the cases listed in the 
second paragraph  of  § I I I .  For  region II the probabil i ty 
averaged over u is 

; , ) 
L -1 f dup3 + . dup2 + f dUPl 

0 (r2-x2) v2 r 

= (2nL) - l  [r + x + x ln(r/x)] 

and for the other regions it is 
(III) 

i ~'~-x2v'2 r L -1 duP4 + f duP3 + f 
t (r2-x2) ''2 

[ r r ]  
= ( 2 n L )  -~ ( L - - x )  l n - - + x l n - + L  

L - - x  x 

with t 2 - r 2 - (L - x)2; 

(IV) 

L -1 duP4 + f dup3 + dup 
t (r2_x2pn 

r 
- - + x l n - + L  

X 

L) 
duP2 + fdUPl 

r 

= (2nL) -1 
r 

(L -- x)  In - 
L x 

L ] 
+ 2L cos -1 - -  -- 2(r  2 -- L2) 1/2 ; 

r 

(v) 

L -1 dup4 + f dup3 
t 

( r x x E + L  2 
= ( 2 n L )  -1 L - - x )  l n - - + - l n  

L - - x  2 x 2 

(vi) 

L -I f duP4 = (2gL)  -1 L cot -1 
0 

+ L co t - '  + In (L -- x)  2 

+ - In - . 
2 \ x 2 

We now must average over x, r still being fixed. 
The integration over x takes us into different regions 

of  I -VI ,  depending on the value of  r. If  r > LV/2,  we 
are always in region VI. Averaging the probabil i ty of  

crossing the top over x from 0 to L/2,  we obtain ¼. This 
is expected, since the line segment must cross if it is 
longer than the square diagonal.  I f L v / 2  > r > L @ ~ ,  
we pass through regions VI and V; if L V " ~  > r > L,  
we pass through V and IV. Both cases give the same 
averaged probabil i ty 

7F -1 + ~ + COS -1 
4L 2 r L " 

Similarly, we get the same result for L/2  < r < L 
(considering regions II and III)  and for 0 < r <- L / 2  
(considering II and I): 

(nLE)-l(rL -- r2/4). 

We may now write the probabil i ty  of  no crossing for 
the square lattice: 

4 r r 2 
P o =  1 - - - - - +  0 < r < L  

n L 7rL 2' - 

4 
- -  1 cos -1 

n nL 2 n 

4 ( r  2 - -  L 2 ) 1 / 2  

+ -  , L <_r < L V / 2  
n L 

= 0 ,  r >- LV/2.  

P0 is cont inuous  and has a cont inuous  first derivative. 
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Abstract Notation 

The use of symbols to express phases in direct methods 
leads to relations between symbols (symbol relations). 
The relative probability of a symbol relation is defined 
in such a way that it has additive properties. The 
algorithm given in this paper is developed for the 
deconvolution of the symbols and is applicable to 
symmetric phases (0 or n) and to anti-symmetric 
phases (+½n or --½n); weighted symbol relations are 
used as input and figures of merit are calculated for all 
permutations of phases for the symbols. The algorithm 
is especially useful when a large number of symbols is 
used. 

Introduction 

Nowadays, the majority of structures solved by direct 
methods are probably solved by using the multisolution 
program M U L T A N  (Main, Lessinger, Woolfson, Ger- 
main & Declercq, 1977). However, the use of symbols 
to express unknown phases remains a powerful tool as 
well. Several methods to process and decode symbolic 
phases have been developed (Karle & Karle, 1966; 
Beurskens, 1964; Schenk, 1971; and others). 

It is the authors' view that by using more than just a 
few symbols, causing a large number of reflections to 
take part in the initiation of the calculations, one avoids 
the use of single or weak phase relationships in the 
initial - often crucial - stages of a phase generation 
procedure. This requires a fast and convenient algo- 
rithm for disentangling the large bulk of symbol 
information. In this paper we describe a suitable 
algorithm ( S Y M A N ) f o r  the deconvolution of symbol 
relations into symmetric phases (0,n) or anti-symmetric 
phases (+½n,--,~n). 

0567-7394/81/020180-04501.00 

~0h 
a, b, c, ... 

is the (unknown) phase of a reflection h 
are the symbols that represent unknown 
phases 
is a linear combination of symbols (e.g. 
a - 2b) 
is a numerical phase, or the numerical 
part of a symbolic phase (e.g. ~Oh = a -- 2b 
+ n can be written as tPh = X + n) 
is the weight associated with the use of 
the sigma-2 or tangent formula for the 
determination of the phase ~0h 

ac =aexp (i(Ph)= 2c7 3 0"2 3/2 IEhl ~ IEh_kEkl 
k 

x exp/(~h-k + ~k), (1) 

where the summation is restricted to 
terms in which (tPh-k + ~0k) is expressed by 

N the same symbol x, a m = Y i--x Z~'for N 
atoms per unit cell 

Symbol relations 

Suppose the phase ~0h has been calculated as X 1 "[- n~, 
with weight a 1, and, independently, as x 2 + n 2, with 
weight a 2. This gives the symbol relation 

Xl + n~ -- x z -- n2 = 0 (mod 2n). (2) 

The variance of this result (acentric), or the probability 
that this relation is correct (centric), is a function of al 
and a 2. 

In view of computer time and programming con- 
venience it is generally desirable to replace variances 
and probabilities by weights which have additive 
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